Dimension reduction in nonparametric models of production

نویسنده

  • Paul W. Wilson
چکیده

It is well-known that the convergence rates of nonparametric efficiency estimators (e.g., free-disposal hull and data envelopment analysis estimators) become slower with increasing numbers of input and output quantities (i.e., dimensionality). Dimension reduction is often utilized in non-parametric density and regression where similar problems occur, but has been used in only a few instances in the context of efficiency estimation. This paper explains why the problem occurs in nonparametric models of production and proposes three diagnostics for when dimension reduction might lead to more accurate estimation of efficiency. Simulation results provide additional insight, and suggest that in many cases dimension reduction is advantageous in terms of reducing estimation error. The simulation results also suggest that when dimensionality is reduced, free-disposal hull estimators become an attractive, viable alternative to the more frequently used (and more restrictive) data envelopment analysis estimators. In the context of efficiency estimation, these results provide the first quantification of the tradeoff between information lost versus improvement in estimation error due to dimension reduction. Results from several papers in the literature are revisited to show what might be gained from reducing dimensionality and how interpretations might differ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research statement of Rohit Patra

My core statistical research focuses on semiparametric/nonparametric methodology and large sample theory — efficient estimation in semiparametric models, nonparametric function estimation (with emphasis on shape constrained estimation), and bootstrap based inference in non-standard problem. I am also actively involved in interdisciplinary research in astronomy. My research has applications in b...

متن کامل

Sufficient Dimension Reduction via Squared-loss Mutual Information Estimation

The goal of sufficient dimension reduction in supervised learning is to find the low-dimensional subspace of input features that contains all of the information about the output values that the input features possess. In this letter, we propose a novel sufficient dimension-reduction method using a squared-loss variant of mutual information as a dependency measure. We apply a density-ratio estim...

متن کامل

Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function

This paper is concerned with estimating the mean of a random variable Y conditional on a vector of covariates X under weak assumptions about the form of the conditional mean function. Fully nonparametric estimation is usually unattractive when X is multidimensional because estimation precision decreases rapidly as the dimension of X increases. This problem can be overcome by using dimension red...

متن کامل

One for all and all for one : Dimension reduction for regression checks

We develop a novel dimension-reduction approach to consistent checks of parametric regression models when many regressors are present. The principle is to replace the nonparametric alternative by a class of semiparametric alternatives, namely single-index models, that is rich enough to allow detection of any nonparametric alternative. We propose an omnibus test based on the kernel method that p...

متن کامل

Self-modeling Regression for Multivariate Curve Data

We present self-modeling regression models for flexible nonparametric modeling of multiple outcomes measured longitudinally. Based on penalized regression splines, the models borrow strength across multiple outcomes by specifying a global time profile, thereby yielding a means of dimension reduction and estimates of trend more precise than those based on univariate regressions. The proposed mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 267  شماره 

صفحات  -

تاریخ انتشار 2018